This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

To cite this Article Ahmad, Shafique, Isab, Anvarhusein A. and Ahmad, Saeed(2003) ''H, ¹³C, ¹⁵N NMR and IR Spectroscopic Studies of a Rh(II) Complex of Thiourea', Journal of Coordination Chemistry, 56: 18, 1587 – 1595 To link to this Article: DOI: 10.1080/00958970310001641688 URL: http://dx.doi.org/10.1080/00958970310001641688

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

¹H, ¹³C, ¹⁵N NMR AND IR SPECTROSCOPIC STUDIES OF A Rh(II) COMPLEX OF THIOUREA

SHAFIQUE AHMAD, ANVARHUSEIN A. ISAB* and SAEED AHMAD

Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

(Received 19 April 2003; In final form 26 September 2003)

A rhodium(II) complex of thiourea (Tu), $Rh_2(OAc)_4Tu_2$, has been prepared from $Rh_2(OAc)_4(H_2O)_2$ and characterized. A shift of the $\nu(N-H)$ vibration towards higher frequencies in the IR spectrum is consistent with sulfur coordination to rhodium(II). ¹³C NMR spectra recorded in DMSO-*d*₆ reveal that thiourea is replaced by DMSO-*d*₆ solvent, followed by replacement of acetate ions by free thiourea. ¹⁵N NMR indicates some nitrogen involvement in coordination to form an S–N chelate.

Keywords: Rhodium acetate; Thiourea; NMR; IR; Exchange phenomena

INTRODUCTION

The ability of thiourea (Tu) to form stable adducts with a variety of transition metals (Cu, Ag, Au and Pt) is well established and the structures of several such complexes have been determined [1–6]. Fatima *et al.* [7] studied the reactions of mono-, di- and tri-substituted thiourea with chloride salts of Pd(II), Pt(IV), Rh(III) and Ir(III) and on the basis of IR data suggested S coordination in all Tu derivatives. Daniele and co-workers [8] investigated the behaviour of substituted thioureas with rhodium(I) and reported the crystal structure of a dinuclear, sulfur-bridged rhodium(I) complex. In 1993 Carlos and co-workers [9] studied the reaction of thiocyanate and thiourea with rhodium(III) aqua ions. However, it was Mal'kova and Shafranskii [10] who first reported infrared spectroscopic and thermogravimetric studies of thiourea compounds of dirhodium(II) tetraacetate. Structural studies [2–5] using spectroscopic techniques (IR and NMR) of thiourea complexes of silver(I), [Ag(Tu)₂SCN and Ag(Tu)₃ClO₄] have shown that Tu can act both as a bridging and terminal ligand (Scheme 1).

In order to observe the coordination behaviour of Tu with rhodium(II) acetate, we have prepared the Rh(II)–Tu complex. Additionally, we have also investigated exchange phenomenon of the Tu ligand with acetate ion in dimethylsulfoxide using ¹H, ¹³C and ¹⁵N NMR spectroscopy. The complexes were characterized by elemental

^{*}Corresponding author. E-mail: aisab@kfupm.edu.sa.

SCHEME 1 Different modes of linkage of thiourea with metal.

analysis, and electronic, FTIR and NMR (¹H, ¹³C, ¹⁵N) spectroscopic techniques. Characterization of rhodium(II) complexes with Tu would provide a basis for understanding and predicting the interactions with more complex sulfur-containing ligands.

EXPERIMENTAL

Chemicals

Rhodium(II) acetate, Rh₂(OAc)₄(H₂O)₂, thiourea and DMSO- d_6 were obtained from the Fluka Chemical CO., Germany and used as received. ¹³C and ¹⁵N labelled thiourea was obtained from the Isotec Co., USA; 5% ¹³C and ¹⁵N enriched Tu was made by mixing 5% labelled 95% unlabelled Tu by weight.

Preparation of the Complex

The complex was synthesized by adding Tu in MeOH to $Rh_2(OAc)_4(H_2O)_2$ [Ia in Fig. 1] in acetone in a mol ratio of 2:1, respectively. The solution was stirred for 30 min. After filtration the product was washed with methanol, acetone and ether, respectively. Mixing of Tu and Ia (Fig. 1) at a 4:1 ratio did not result in a change in the number of Tu ligands in the resulting complex; the same $Rh_2(OAc)_4Tu_2$ [IIa in Fig. 1] complex was obtained. Anal. Calcd. for $Rh_2(OAc)_4Tu_2$ (%): C, 22.79; H, 3.98; N, 9.84. Found: C, 24.20; H, 3.36; N, 9.42.

NMR Measurements

All NMR measurements were carried out on a Jeol JNM-LA 500 NMR spectrophotometer at 297 K using 0.05 M solutions of the complexes in DMSO- d_6 . ¹³C spectra were obtained at 125.65 MHz with ¹H broadband decoupling. Conditions were: 32 k data points, 0.967 s acquisition time, 1.00 s pulse delay and 45° pulse angle. The ¹⁵N NMR spectrum was recorded at 50.55 MHz using ¹⁵NH₄ NO₃ as external reference, which lies at -358.62 ppm relative to pure MeNO₂ [11]. Conditions for ¹⁵N were: 32 K data points, 0.721 s acquisition time, 2.50 s delay time, 60° pulse angle and approx. 5000 scans.

FTIR

The solid state FTIR spectrum of the complex was recorded in the range $3500-450 \text{ cm}^{-1}$ on a Perkin-Elmer 16 FPC FT-IR using KBr pellets, with 8 scans and a resolution of 4 cm^{-1} . Results are summarized in Table I.

FIGURE 1 Structure of $Rh_2(OAc)_4 \cdot 2L$. $L = H_2O$ (Ia), L = Tu (IIa), L = DMSO (IIIa).

Vibrational band	Thiourea ^a	$Rh_2(OAc)_4(Tu)_2^{a}$	$Rh_2(OAc)_4(Tu)_2^{b}$	
δ (NCN)	488 m,b	484 w	485	
$\gamma(CH_3)$	·	588 m,b, 626 w	602, 625	
$\nu_{\rm s}(\rm CS)$	730 s	650 w	645	
$v_{s}(CC)$		702 s, 726 m, 742 w	705, 730	
$\delta_{s}(HCC)$		1046 w	1049	
$\delta_{s}(CH_{3})$		1346 w	1350	
$\nu(CN) + \nu(CS)$	1084 s	1102 w	1090	
$+\delta$ (HNC)				
$\delta_{as}(CH_3)$		1410 s	1415	
$\nu(CN) + \nu(CS)$	1414 s, 1470 s	1490 m	1400 i, 1492	
$+\delta(NH_2)+\delta(HNC)$				
$v_{\rm s}(\rm COO)$		1440 sh	1145	
$v_{as}(COO)$		1584 s	1587	
$\delta(NH_2)$	1616 s	1616 m, 1648 m	1618	
v(NH)	3174 m, 3274 m,	3216 m, 3326 m,	3325, 3407	
· · ·	3380 m	3398 m	, 	

TABLE I Comparison of IR absorption peaks for thiourea and its corresponding complexes

^aThis study; ^bValues taken from Ref. [10].

Electronic Spectra

Electronic spectra of 1.862×10^{-4} M solutions of the complex in DMSO were recorded at different time intervals in the range 500–200 nm on a Perkin-Elmer Lambda 5 spectrophotometer. The following instrumental conditions were used: slit=2 nm, scan speed = 60 nm/min, response = 0.2 s. Results are summarized in Table II.

RESULTS AND DISCUSSION

Ambidentate thiourea, $SC(NH_2)_2$, is capable of bonding to transition metals via sulfur or nitrogen. Thiourea can exist in more than one form due to resonance as shown in Scheme 2. Upon complexation through sulfur to metal ions such as Ag(I), Au(I) and

<i>Time</i> (h)	Absorption 1 (nm)	A_{I}	$\varepsilon_I (\mathrm{cm}^{-1}\mathrm{M}^{-1})$	Absorption 2 (nm)	A_2	$\varepsilon_2 (\mathrm{cm}^{-1}\mathrm{M}^{-1})$
1	262.0	1.731	9830	304.4	2.255	12800
2	262.0	1.720	9760	305.7	2.243	12730
5	262.1	1.701	9660	305.7	2.203	12510
15	261.6	1.811	10280	305.7	2.305	13090
17	261.9	1.793	10180	305.8	2.257	12810
22	261.9	1.783	10120	305.7	2.225	12630
24	261.9	1.788	10150	305.6	2.216	12580
36	261.1	1.844	10470	305.4	2.264	12850

TABLE II Time dependent study of electronic absorption for peaks around 262 nm and 304 nm of 1.76×10^{-4} M Rh₂(OAc)₄(Tu)₂ complex

SCHEME 2 Resonance structures of thiourea.

Rh(II), resonance structures II and III also become significant. When Tu is complexed with Ia (Fig. 1) to produce IIa (Fig. 1), three diagnostic vibrational IR bands, ν (C=S), ν (C–N), and ν (NH₂), produce significant changes in frequency. Upon coordination via the sulfur atom, the (C=S) double bond character is expected to be reduced [11]. Therefore, a decrease in frequency for the ν (C=S) mode with concomitant increases in ν (C–N) and ν (NH₂) modes should be observed. On the other hand, if thiourea is coordinated through nitrogen [12], an opposite effect should be expected.

In the FTIR spectrum of the complex, the ν (C=S) mode of thiourea was observed at a lower frequency (726 cm^{-1}) compared to that for free thiourea (730 cm^{-1}) . We have observed this signal at 724 cm^{-1} for thiourea terminally coordinated to Ag(I) through the S atom. This decrease is indicative of reduction in the C=S bond order on sulfur coordination to rhodium(II). Free thiourea has a band of medium intensity at 1084 cm⁻¹, primarily assigned to the v_s (NCN) stretch [12] and which is markedly reduced in intensity in FTIR spectra of transition metal complexes containing S-bonded thiourea. However, Mal'kova and Shafranskii [10] assigned the band at 1086 cm⁻¹ to a combination band, $\nu(CN) + \nu(CS) + \delta(HNC)$. This band shifted to higher frequency (1090 cm⁻¹) in their reported complex IIa (Fig. 1). In our study, this peak at $1084 \,\mathrm{cm}^{-1}$ was shifted to $1102 \,\mathrm{cm}^{-1}$ with reduced intensity and is in accord with an increase in (C-N) double bond character upon Rh-S bond formation. The $\nu(NH_2)$ modes of Tu occur at 3174, 3274 and 3380 cm⁻¹, and after complexation with Rh(II) were observed at 3216, 3326 and 3398 cm⁻¹, respectively. A low frequency shift in ν (C=S) and a high frequency shift in ν (NH₂) shows that Tu is coordinated to Rh(II) through S. Furthermore, the strong band at 1414 cm^{-1} for Tu is assigned to a combination mode involving $\nu(NCN)$, $\delta(NH_2)$ and $\nu(C=S)$. This mode is clearly split in the FTIR spectrum of the complex (1382, 1410 and 1437 cm^{-1}), in further support for Tu being coordinated to Rhodium(II) via the sulfur atom. The increase of v_a (NCN) from 1470 cm⁻¹ in free Tu to 1490 cm⁻¹ in the complex further substantiates (Rh–S) bond formation. Furthermore, the strong IR band at 1616 cm^{-1} for free Tu due to the $\delta(\text{NH}_2) \text{ cm}^{-1}$ mode is split upon complexation into three bands of higher frequency at 1627, 1648 and 1684 cm⁻¹.

For free Tu the $n \rightarrow \pi^*$ transition occurs at 291 nm [13] with a molar extension coefficient (ε) value of 77 cm⁻¹ M⁻¹. The value of λ_{max} for the complex in DMSO at 267.6 nm with molar extension coefficient 432 cm⁻¹ M⁻¹ has been observed, probably due to a $\pi \rightarrow \pi^*$ transition. For complex Ia (Fig. 1), three prominent absorptions at 240.6, 290.7 and 332.9 nm with molar extension coefficients of 2817, 9327 and 998 cm⁻¹ M⁻¹, respectively, have been recorded. For complex IIa, as Table II shows, after 1 h two dominant peaks appear around 262.0 and 304.5 nm with average molar extension coefficients of 9830 and 12 800 cm⁻¹ M⁻¹, respectively. Absorption at 304.5 nm with an ε value of 12 800 cm⁻¹ M⁻¹ for IIa indicates ligand to metal charge transfer (LMCT). Since sulfur is a soft ligand and C=S has a low lying empty π^* orbital and at the same time Rh(II) is a 4d⁷ system, the d $\rightarrow \pi^*$ back bonding (MLCT) transition with an ε value of 9830 cm⁻¹ M⁻¹ is also significant. While for both the peaks there is a very slight change both in λ and ε value with time, no new distinguishable signal was observed over 36 h.

NMR spectra in DMSO- d_6 solvent reveal some interesting features. Both ¹H and ¹³C NMR indicate time dependent exchange of OAc with the Tu ligand. In ¹H NMR a broad signal (after 15 min) between 6.5 and 8.0 ppm indicates that both free Tu and a complex containing Rh–Tu are present (Figure not shown). Al-Etri and co-workers [12] have reported the ¹H signal of $-NH_2$ in free Tu in DMSO- d_6 at 7.18 ppm. However, in the present study this was observed at 7.10 ppm, as reported earlier [11]. It is noted that with time two peaks for bonded and free Tu separate and appear at 7.19 and 7.66 ppm. The signal at 7.66 ppm indicates substantial reduction in electron density on the nitrogen atom and thus indicates possible Rh–S bond formation.

 13 C NMR spectra of 0.05 M IIa in DMSO- d_6 solvent recorded at different time interval (Figs. 2a and 2b) indicate exchange phenomena among various species in solution including DMSO, Tu and OAc. The spectrum recorded after 1h shows only three signals at 23.63, 183.76 (triplet) and 191.16 ppm, corresponding to δ^{-13} C (OAc bonded to Rh(II) in Ia of Fig. 1), ${}^{13}C=S$ (free Tu) and β - ${}^{13}C=O$ of OAc (bonded to Rh), respectively. The signal at 183.76 is a triplet because of ${}^{13}C{}^{-15}N$ coupling in IIa. The coupling constant J_{C-N} is 15.0 Hz compared to a value of 14 Hz reported earlier [11]. These signals were confirmed from individual ¹³C spectra of Tu and Ia recorded in DMSO- d_6 . Complex Ia produces only two ¹³C signals at 23.7 and 191.3 ppm corresponding to $\delta^{-13}C$ and $\beta^{-13}C=O$ (Fig. 1) of OAc (bonded to Rh(II)), respectively. Based on these assignments for the ¹³C spectrum of complex IIa after 1 h, it is apparent that DMSO has replaced only Tu. However, signals at 23.63 and 191.12 ppm indicate that the Rh–O bond persists. This observation is in accord with the earlier work [10] of Mal'kova and Shafranskii, who reported that the Rh-O bond is more stable than Rh-S. Therefore, DMSO initially replaces Tu rather than OAc. The ¹³C spectrum recorded after 5h (Figs. 2a and 2b) shows six prominent signals, and incorporates three new signals at 21.44, 172.30 and 181.59 (triplet) ppm with J_{C-N} 12.0 Hz. Two new singlets at 21.44 and 172.30 ppm are from -CH₃ and C=O of free OAc, being replaced by Tu ligand. The signal at 191.06 ppm indicates that C=O carbon in bonded OAc is deshielded due to an increase in C=O character by loss of resonance in bonded bidentate acetate ion. Moreover, the carbon atom of the methyl group in bonded OAc is also deshielded due to possible hyperconjugation of $-CH_3$ with C=O

FIGURE 2 Top (a) ¹³C spectrum of $0.05 \text{ M Rh}_2(\text{OAc})_4(\text{Tu})_2$ complex in DMSO- d_6 (¹³C, ¹⁵N labelled Tu was used) (Expanded version of Fig. 1b); Bottom (b) ¹³C spectrum of $0.05 \text{ M Rh}_2(\text{OAc})_4(\text{Tu})_2$ complex in DMSO- d_6 (¹³C, ¹⁵N labelled Tu was used).

in **IIa**. Thus, both C-atoms in bonded OAc ligand are deshielded and appear downfield compared to the free acetate ion, for which both carbons appear upfield at 21.44 and 172.30 ppm respectively.

Further, the ¹³C spectrum of **Ia** recorded in DMSO- d_6 shows only two peaks at 191.32 and 23.63 ppm even after one week, thus indicating no exchange between DMSO solvent and OAc bonded ligand. This validates our assumption that the OAc ligand of complex **IIa** in DMSO is replaced by Tu but not the solvent. It was also observed that as time passes, the intensity of the signal at 21.4 ppm increases with concomitant decrease in intensity at 23.61 ppm. After 10 h additional peaks around 180 ppm were observed, and these may represent the formation of a Rh–N bond by Tu already bonded with S atom or slow exchange between isomers. The ¹³C spectrum recorded after 20 h indicates three new signals at 116.59, 116.45 and 116.29 ppm, which are more intense for the ¹³C spectrum recorded after 2 weeks (Fig. 3). These signals may indicate linkage b of Rh(II) with Tu as shown in Scheme 1. These three peaks also indicate some possibility of isomers being slowly exchanged. Figure 3 also reveals that the intensity of the signal at 21.39 ppm (due to free OAc ligand) is three to four times higher than the intensity for the bonded OAc ligand at 23.63 ppm. Thus, based on the ¹³C spectra (Figs. 2a, 2b and 3), the following exchange phenomena are proposed.

$$Rh_2(OAc)_4(Tu)_2 + DMSO(solvent) = Rh_2(OAc)_4(DMSO)_2 + 2Tu$$
 (1)

$$Rh_{2}(OAc)_{4}(DMSO)_{2} + xTu = Rh_{2}(OAc)_{4-x}(DMSO)_{2}(Tu)_{y} + xOAc$$
(2)

Cotton *et al.* [14] reported an extraordinarily short Rh–Rh bond length of 2.3855 Å for complex **Ia** and assigned a triple bond between Rh–Rh. However, Dubicki and Martin [15] concluded that spectroscopic behaviour is more consistent with a Rh–Rh single bond. We believe that this abnormally short and strong Rh–Rh bond remains intact during the exchange process. It is reported in the literature [16,17] that substitution of H_2O ligand in axial positions in **Ia** with ligands having either a strong *trans* influence

FIGURE 3 13 C spectrum of 0.05 M Rh₂(OAc)₄(Tu)₂ complex in DMSO-*d*₆ recorded after 2 weeks (13 C, 15 N labelled Tu was used).

or π acceptor ability results in an increase of the Rh–Rh bond distance. Therefore, in **IIIa**, due to the π acceptor nature of DMSO, the Rh–Rh bond distance increases, resulting in a weakening of the Rh–O bond strength of the bidentate OAc ligand. Under such circumstances free Tu in solution starts to replace the bonded OAc ligand, as shown in reaction 2.

Further support for the probability of different linkage isomers of Tu during the exchange emerges from the ¹⁵N spectrum (Fig. 4) of **IIa**. The resonance recorded at -271.35 ppm indicates free Tu and the signal around -262.57 ppm indicates deshielded ¹⁵N in Tu bonded to Rh(II) via sulfur. However, an upfield shift of ¹⁵N signals around -280.35 (dd), -281.75 (dd) and -282.95 ppm indicates involvement of N with Rh in the complex. The dd at -282.95 and -280.35 ppm have the same $J_{103}^{103}Rh_{15}^{-15}N = 25.0 Hz$, while $J_{15}^{15}N_{13}^{-13}C = 15.0 Hz$. Thus both these dd probably indicate isomers of Ib (Fig. 4) with similar Rh-Tu interactions. On the other hand, dd at -281.75 ppm has J_1^{103} Rh $^{-15}$ N] = 18.0 Hz and J_1^{15} N $^{-13}$ C] = 10.0 Hz. This lower value of J^{[103}Rh-¹⁵N] probably indicates a weak Rh(II)-N interaction and perhaps involvement of both N atoms with each Rh(II) as shown in IIb in Fig. 4. In Tu, bond angles calculated between NCN and NCS are 111.6 and 124.2 respectively, and for this purpose the Gaussian 98 program was used to carry out geometry optimization with Hartree Fock method (HF) using the Slater Type Orbital as a basis set. Since the Rh-Rh bond distance of any complex shown in Fig. 1 is around 2.4Å, formation of both Rh-N bonds (owing to the smaller NCN bond angle) like OAc in complexes Ia. IIa and IIIa (Fig. 1) will result in strain, with a concomitant decrease

FIGURE 4 ¹⁵N spectrum of 0.05 M Rh₂(OAc)₄(Tu)₂ complex in DMSO-d₆ (¹³C, ¹⁵N labelled Tu was used).

in coupling constant. Therefore, formation of the Rh(II) complexes in solution involving both N atoms of Tu (like the involvement of both O atoms of OAc in complexes shown in Fig. 1) is expected to give weak Rh–N interactions resulting in a lowering of J_{103}^{103} Rh–¹⁵N] values. J_{103}^{103} Rh–¹⁵N] values calculated in our study are somewhat higher than the previously noted J_{103}^{103} Rh–¹⁵N] = 10.1, 15.9 and 17.1 Hz for complexes [Rh(H)₂(O₂CArN)(PPh₃)₂] (O₂CArN = isoquinoline-1-carboxylate) [18], [RhCl(N₂Ph)(PMePh₂)₃][PF₆] [19] and [*trans*-Rh(Py)₄Cl₂]Cl [20], respectively.

Figure 4 also incorporates three weak ¹⁵N signals around -186.21 ppm, which probably indicates binding of S to both Rh atoms simultaneously as shown (**IIIb**) in Fig. 4. This involves the transfer of electron density from the nitrogen atoms to the sulfur atom with partial transformation of the C=S double bond. This is matched by the ¹³C signals around 116.0 ppm as discussed previously, and indicates flow of electrons from N→C, thus resulting in shielding of C in C=S with concomitant deshielding of N. Indeed such bonding of S to two metal centres has been reported in the literature [21–23] and coordination of a sulfur atom to three Cu(I) centres is also reported [24].

It is shown that H_2O can be replaced by Tu in $Rh_2(OAc)_4(H_2O)_2$ and it is bonded via the sulfur atom as shown by FTIR. Initially DMSO replaces Tu followed by exchange of OAc in the complex by Tu. However, these exchange reactions are slow and reversible as shown by ¹³C and ¹⁵N NMR spectra. ¹⁵N NMR indicates a different linkage of Tu with Rh(II) in solution.

Acknowledgements

We thank the Chemistry Department, King Fahd University of Petroleum and Minerals, for providing all necessary facilities. We also thank Prof M.S. Hussain for helpful discussions.

References

- [1] E.L. Amma and W.A. Spofford, Acta Crystallogr. B26, 1474 (1974).
- [2] E.A. Vizzini, I.F. Taylor and E.L. Amma, Inorg. Chem. 7, 1351 (1968).
- [3] M.R. Udupa and B. Krebs, Inorg. Chim. Acta 7, 271 (1973).
- [4] M.R. Udupa, G. Henkel and B. Krebs, Inorg. Chim. Acta 18, 173 (1976).
- [5] L.C. Porter, J.P. Fackler Jr, J. Costamagna and R. Schmidt, Acta Crystallogr. C48, 1751 (1992).
- [6] U. Bierbach, T.W. Hambly and N. Farrell, Inorg. Chem. 37, 708 (1998).
- [7] E. Fatima and W. Al-Masry, Asian J. Chem. 13, 128 (2001).
- [8] C. Daniele, P.M. Angela, P. Giovanni and T. Antonio, Gazzetta Chim. Ital. 123, 713 (1993).
- [9] D.B. Carlos, M. Schmuelling, M. van Eldik and H. Donald, Transition Metal Chem. 18, 537 (1993).
- [10] T.A. Mal'kova and V.N. Shafranskii, J. Phys. Chem. (English Translation) 49, 1653 (1975).
- [11] A. Saeed, A.A. Isab and H.P. Perzanowski, Transition Metal Chem. 27, 782 (2002), and references therein.
- [12] M.M. El-Etri and W.M. Scovell, Inorg. Chim. Acta 187, 201 (1991).
- [13] R.M. Silverstein, G.C. Bassler and T.C. Morrill, Spectrometric Identification of Organic Compounds (John Wiley and Sons, New York, 1991).
- [14] F.A. Cotton, B.G. DeBoer, M.D. LaPrade, J.R. Pipal and D.A. Ucko, Acta Crystallogr. B27, 1664 (1971).
- [15] L. Dubicki and R.L. Martin, Inorg. Chem. 9 673 (1970).
- [16] Y.B. Koh and G.G. Christoph, Inorg. Chem. 17, 2590 (1978).
- [17] Y.B. Koh and G.G. Christoph, Inorg. Chem. 18, 1122 (1979), and references therein.
- [18] L. Carlton and M.P. Belciug, J. Organomet. Chem. 378, 469 (1989).
- [19] B.L. Haymore, M. Hughes, J. Mason and R.L. Richards, J. Chem. Soc. Dalton Trans. 2935 (1988).
- [20] K.S. Bose and E.H. Abbott, Inorg. Chem. 16, 3190 (1977).
- [21] Ya. E. Filinchuk, V.V. Oliinik and D. Schollmeier, Koord. Khim. 25, 226 (1999).
- [22] V.V. Oliinik, E.A. Goreshink, D. Schollmeier and M.G. Mys'kiv, Koord. Khim. 23, 548 (1997).
- [23] Ya. E. Filinchuk, D. Schollmeier and V.V. Olinik, Koord. Khim. 26, 1474 (1970).
- [24] Ya. E. Filinchuk, V.V. Oliinik, T. Glovyak and M.G. Mys'kiv, Koord. Khim. 27, 139 (2001).